2,928 research outputs found

    Photoemission study of poly(dA)-poly(dT) DNA : Experimental and theoretical approach to the electronic density of states

    Full text link
    We present results of an ultraviolet photoemission spectroscopy study of artificially synthesized poly(dA)-poly(dT) DNA molecules on pp-type Si substrates. For comparison, we also present the electronic density of states (DOS) calculated using an \emph{ab initio} tight-binding method based on density-functional theory (DFT). Good agreement was obtained between experiment and theory. The spectra of DNA networks on the Si substrate showed that the Fermi level of the substrate is located in the middle of the band gap of DNA. The spectra of thick (70\sim 70 nm) DNA films showed a downward shift of 2\sim 2 eV compared to the network samples.Comment: 4 pages, 4 figure

    Alternative final steps in berberine biosynthesis in Coptis japonica cell cultures

    Get PDF
    In Coptis japonica cell cultures an alternative pathway has been discovered which leads from (S)-tetrahydrocolumbamine via (S)-canadine to berberine. The two enzymes involved have been partially purified. (S)-Tetrahydrocolumbamine is stereospecifically transformed into (S)-canadine under formation of the methylenedioxy bridge in ring A. This new enzyme was named (S)-canadine synthase. (S)-Canadine in turn is stereospecifically dehydrogenated to berberine by an oxidase, (S)-canadine oxidase (COX), which was partially purified (25-fold). This enzyme has many physical properties in common with the already known (S)-tetrahydroprotoberberine oxidase from Berberis but grossly differs from the latter enzyme in its cofactor requirement (Fe) and its substrate specificity. Neither (S)-norreticuline nor (S)-scoulerine serves as substrate for the Coptis enzyme, while both substrates are readily oxidized by the Berberis enzyme. The four terminal enzymes catalyzing the pathway from (S)-reticuline to berberine are housed in Berberis as well as in Coptis in smooth vesicles with a density of =1.14 g/ml. These vesicles have been enriched and characterized by electron microscopy

    Kagom\'{e} ice state in the dipolar spin ice Dy_{2}Ti_{2}O_{7}

    Get PDF
    We have investigated the kagom\'{e} ice behavior of the dipolar spin-ice compound Dy_{2}Ti_{2}O_{7} in magnetic field along a [111] direction using neutron scattering and Monte Carlo simulations. The spin correlations show that the kagom\'{e} ice behavior predicted for the nearest-neighbor (NN) interacting model, where the field induces dimensional reduction and spins are frustrated in each two-dimensional kagom\'{e} lattice, occurs in the dipole interacting system. The spins freeze at low temperatures within the macroscopically degenerate ground states of the NN model.Comment: 5 pages, 3 figures, submitted to PR

    Orbital-Order Driven Ferroelectricity and Dipolar Relaxation Dynamics in Multiferroic GaMo4_4S8_8

    Get PDF
    We present the results of broadband dielectric spectroscopy of GaMo4_4S8_8, a lacunar spinel system that recently was shown to exhibit non-canonical, orbitally-driven ferroelectricity. Our study reveals complex relaxation dynamics of this multiferroic material, both above and below its Jahn-Teller transition at TJT=47_{\textrm{JT}}=47 K. Above TJT_{\textrm{JT}}, two types of coupled dipolar-orbital dynamics seem to compete: relaxations within cluster-like regions with short-range polar order like in relaxor ferroelectrics and critical fluctuations of only weakly interacting dipoles, the latter resembling the typical dynamics of order-disorder type ferroelectrics. Below the Jahn-Teller transition, the onset of orbital order drives the system into long-range ferroelectric order and dipolar dynamics within the ferroelectric domains is observed. The coupled dipolar and orbital relaxation behavior of GaMo4_4S8_8 above the Jahn-Teller transition markedly differs from that of the skyrmion host GaV4_4S8_8, which seems to be linked to differences in the structural distortions of the two systems on the unit-cell level.Comment: 6 pages, 3 figures + Supplemental Material (2 pages, 2 figures
    corecore